Mechanical built-in circuit supplies | Nature


  • Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. & Pernice, W. H. P. The rise of clever matter. Nature 594, 345–355 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • McEvoy, M. A. & Correll, N. Supplies that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS 
    Article 

    Google Scholar 

  • Wehner, M. et al. An built-in design and fabrication technique for completely smooth, autonomous robots. Nature 536, 451–455 (2016).

  • Pishvar, M. & Harne, R. L. Foundations for smooth, good matter by lively mechanical metamaterials. Adv. Sci. 7, 2001384 (2020).

    CAS 
    Article 

    Google Scholar 

  • Li, L., Scheiger, J. M. & Levkin, P. A. Design and purposes of photoresponsive hydrogels. Adv. Mater. 31, 1807333 (2019).

    Article 

    Google Scholar 

  • Han, D., Lu, Z., Chester, S. A. & Lee, H. Micro 3D printing of a temperature-responsive hydrogel utilizing projection micro-stereolithography. Sci. Rep. 8, 1963 (2018).

    ADS 
    Article 

    Google Scholar 

  • Sears, N. C., Berrigan, J. D., Buskohl, P. R. & Harne, R. L. Versatile hybrid digital materials programs with programmable pressure sensing architectures. Adv. Eng. Mater. 20, 1800499 (2018).

    Article 

    Google Scholar 

  • Valentine, A. D. et al. Hybrid 3D printing of sentimental electronics. Adv. Mater. 29, 1703817 (2017).

    Article 

    Google Scholar 

  • Gong, J., Seow, O., Honnet, C., Forman, J. & Mueller, S. MetaSense: integrating sensing capabilities into mechanical metamaterial. In thirty fourth Annual ACM Symposium on Person Interface Software program and Expertise 1063–1073 (2021).

  • Barri, Okay. et al. Multifunctional meta-tribomaterial nanogenerators for power harvesting and lively sensing. Nano Power 86, 106074 (2021).

    CAS 
    Article 

    Google Scholar 

  • Nick, Z. H., Tabor, C. E. & Harne, R. L. Liquid metallic microchannels as digital sensors in mechanical metamaterials. Excessive Mech. Lett. 40, 100871 (2020).

    Article 

    Google Scholar 

  • Otake, M., Kagami, Y., Inaba, M. & Inoue, H. Movement design of a starfish-shaped gel robotic fabricated from electro-active polymer gel. Rob. Autom. Syst. 40, 185–191 (2002).

    Article 

    Google Scholar 

  • Ye, Z., Hou, P. & Chen, Z. 2D maneuverable robotic fish propelled by a number of ionic polymer–metallic composite synthetic fins. Int. J. Intell. Robotic. Appl. 1, 195–208 (2017).

    Article 

    Google Scholar 

  • Yang, D. et al. Buckling pneumatic linear actuators impressed by muscle. Adv. Mater. Technol. 1, 1600055 (2016).

    Article 

    Google Scholar 

  • Wani, O. M., Zeng, H. & Priimagi, A. A lightweight-driven synthetic flytrap. Nat. Commun. 8, 15546 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jin, H. et al. Smooth and good modular buildings actuated by form reminiscence alloy (SMA) wires as tentacles of sentimental robots. Good Mater. Struct. 25, 085026 (2016).

    ADS 
    Article 

    Google Scholar 

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Pal, A., Restrepo, V., Goswami, D. & Martinez, R. V. Exploiting mechanical instabilities in smooth robotics: management, sensing, and actuation. Adv. Mater. 33, 2006939 (2021).

    CAS 
    Article 

    Google Scholar 

  • Xu, B., Chen, D. & Hayward, R. C. Mechanically gated electrical switches by creasing of patterned metallic/elastomer bilayer movies. Adv. Mater. 26, 4381–4385 (2014).

    CAS 
    Article 

    Google Scholar 

  • Chae, S. et al. Stretchable skinny movie mechanical‐pressure‐gated switches and logic gate features primarily based on a smooth tunneling barrier. Adv. Mater. 33, 2104769 (2021).

    CAS 
    Article 

    Google Scholar 

  • Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss buildings for non-volatile mechanical reminiscence operation. Nat. Commun. 8, 962 (2017).

    ADS 
    Article 

    Google Scholar 

  • Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. USA 115, 6916–6921 (2018).

  • Meng, Z. et al. Bistability-based foldable origami mechanical logic gates. Excessive Mech. Lett. 43, 101180 (2021).

    Article 

    Google Scholar 

  • Track, Y. et al. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10, 882 (2019).

    ADS 
    Article 

    Google Scholar 

  • Zanaty, M., Schneegans, H., Vardi, I. & Henein, S. Reconfigurable logic gates primarily based on programable multistable mechanisms. J. Mech. Robotic. 12, 021111 (2020).

    Article 

    Google Scholar 

  • Ion, A., Wall, L., Kovacs, R. & Baudisch, P. Digital mechanical metamaterials. In Proc. 2017 CHI Convention on Human Components in Computing Techniques 977–988 (2017).

  • Raney, J. R. et al. Steady propagation of mechanical indicators in smooth media utilizing saved elastic power. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Preston, D. J. et al. Digital logic for smooth gadgets. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jin, Y. et al. Supplies tactile logic through innervated smooth thermochromic elastomers. Nat. Commun. 10, 4187 (2019).

    ADS 
    Article 

    Google Scholar 

  • El Helou, C., Buskohl, P. R., Tabor, C. E. & Harne, R. L. Digital logic gates in smooth, conductive mechanical metamaterials. Nat. Commun. 12, 1633 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Shannon, C. E. A symbolic evaluation of relay and switching circuits. Electr. Eng. 57, 713–723 (1938).

    Article 

    Google Scholar 

  • McCluskey, E. J. Minimization of Boolean features. Bell Syst. Tech. J. 35, 1417–1444 (1956).

    MathSciNet 
    Article 

    Google Scholar 

  • Grima, J. N., Alderson, A. & Evans, Okay. E. Auxetic conduct from rotating inflexible models. Phys. Standing Solidi B 242, 561–575 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ma, F., Wu, J. H., Huang, M., Fu, G. & Bai, C. Cochlear bionic acoustic metamaterials. Appl. Phys. Lett. 105, 213702 (2014).

    ADS 
    Article 

    Google Scholar 

  • Vuyk, P., Cui, S. & Harne, R. L. Illuminating origins of influence power dissipation in mechanical metamaterials. Adv. Eng. Mater. 20, 1700828 (2018).

    Article 

    Google Scholar 



  • Supply hyperlink

    Leave a Reply

    Your email address will not be published.